a2 United States Patent

US009471550B2

10) Patent No.: US 9,471,550 B2

Boutelle et al. 45) Date of Patent: Oct. 18, 2016
(54) METHOD AND APPARATUS FOR (56) References Cited
DOCUMENT CONVERSION WITH FONT
METRICS ADJUSTMENT FOR FORMAT U.S. PATENT DOCUMENTS
COMPATIBILITY 6,434,581 B1* 8/2002 Forcier GOG6F 3/0488
(71) Applicant: LinkedIn Corporation, Mountain 6,565,600 BL* 5/2003 Sorge et al. ..o ;}ggzi
View, CA (US) 8,707,164 B2* 4/2014 Adler, III GO6F 17/214
715/200
(72) Inventors: Jonathan Boutelle, San Francisco, CA 588‘5‘; 8;2;38 ﬁi: 1?%88‘5‘ grla_ng et talal ~~~~~~~~~~~~~~~~~ g%ggg
(US); Kapil Mohan Gupta, Delhi (IN); 2003/0268228 AL* 122003 Buser et al. oo 715/523
Michael Casey Brown, San Francisco, 2006/0170683 Al* 82006 Lin 345/467
CA (US); Akash Agrawal, Gurgaon 2006/0282769 Al* 12/2006 Bronstein 715/526
(IN); Christopher S. Ahlers, San 2007/0250497 Al* 10/2007 Mansfield et al. 707/5
Francisco, CA (US); Jeba Singh (Continued)
Emmanuel, Tirunelveli (IN); Ujjwal
Singh Grover, New Delhi (IN) Primary Examiner — Cesar Paula
Assistant Examiner — Luu-Phuong Nguyen
(73) Assignee: LinkedIn Corporation, Mountain (74) Attorney, Agent, or Firm — Park, Vaughan, Fleming
View, CA (US) & Dowler LLP
(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent is extended or adjusted under 35 .
U.S.C. 154(b) by 365 days. Method and apparatus for converting a document from a
fixed-layout format (e.g., Microsoft Office, Adobe PDF) into
(21) Appl. No.: 13/653,214 a non-fixed layout format (e.g., HTML) portable to different
platforms (e.g., desktop computers, tablet computer, smart
(22) Filed: Oct. 16, 2012 phones) operating different operating systems (e.g., Micro-
soft Windows, Apple OS X) and different web browsers
(65) Prior Publication Data (e.g., Microsoft Internet Explorer, Apple Safari, Mozilla
US 2014/0108897 Al Apr. 17, 2014 FireFox). In one stream, fonts are identified, extracted, and
processed to enhance compatibility with the portable format.
(51) Int. CL In another stream, textual content is extracted and processed
HO3M 5/00 (2006.01) to enhance compatibility and images are taken of non-
HO3M 7/30 (2006.01) textual content. These images are used as backgrounds in the
GOGF 17/21 (2006.01) output document, over which the textual content is rendered
GO6F 17/22 (2006.01) in the appropriate fonts, with sizing, spacing, positioning
(52) US. CL and/or other characteristics matching or closely approximat-
CPC GO6F 17/214 (2013.01); GOG6F 17/227 ing that of the original document. Error detection is applied
(2013.01) by comparing images of the original document to corre-
(58) Field of Classification Search sponding images of the output document, to ensure high

CPC . GO6F 17/24; GO6F 17/211; GOG6F 17/30017
USPC ittt 715/201
See application file for complete search history.

fidelity.

18 Claims, 5 Drawing Sheets

US 9,471,550 B2
Page 2

(56)

2008/0238927 Al* 10/2008 Mansfield
2009/0070415 Al*
2010/0013835 Al*
2010/0114923 Al1*

References Cited

U.S. PATENT DOCUMENTS

3/2009 Kishi et al.
1/2010 Kuhns

5/2010 McVady et al.

....... 345/467
... 709/203
... 345/471

....... 707/758

2011/0258535 Al*
2012/0207390 Al*

2013/0067313 Al*
2013/0174010 Al*
2013/0174017 Al*

* cited by examiner

10/2011
82012

3/2013
7/2013
7/2013

Adler et al. 715/235
Sayers ..o GO6T 11/60

382/176
Leguin et al. 715/234
Le Chevalier et al. 715/234
Richardson et al. 715/234

U.S. Patent Oct. 18, 2016 Sheet 1 of 5 US 9,471,550 B2

{ Start)

y

Receive fixed-layout document
102

A

Extract and process fonts
104

h 4

Extract and process text
106

A 4

Extract and render non-text content
108

\ 4

Combine processed fonts, text and
non-text content
110

Perform error detection and correction
112

End

FIG. 1

U.S. Patent Oct. 18, 2016 Sheet 2 of 5 US 9,471,550 B2

(Start }

\ 4

Identify all glyphs on current page of
document
202

y
[Translate character encoding (e.g., into
UTF-8), if necessary)

204]

Yy

[Convert glyphs into an intermediate '
format

|_ 208

A

Normalize font metrics
208

A

Convert fonts into final forms
compatible with browser programs
210

Yes

All
pages processed?
220

Next page
230

End

FIG. 2

h 4

U.S. Patent

Oct. 18, 2016 Sheet 3 of 5

{ Start)

A

Create images of page

302

4

Resize, compress image as necessary
304

A 4

Extract all text blocks from page
306

Y

Performed advanced processing, as
necessary
308

Yes

All
pages processed?
320

Next page

330

End

FIG. 3

Y

US 9,471,550 B2

U.S. Patent Oct. 18, 2016 Sheet 4 of 5 US 9,471,550 B2

{ Start)

y

Generate page background Next page
402 430

4

Place fonts
404

y

[Optimize page/document
406

A

Perform error detection
408

No

Errors
exceed a threshold?
410

Adopt page of original page in place of
assembled page
412

y

Add page to output document
414

End

FIG. 4

U.S. Patent Oct. 18, 2016 Sheet 5 of 5 US 9,471,550 B2

Display
516
"
.~ | Font Processing Logic
p . 7 522
Document Converter 500 d b o
i ’ 4 A
P YTy Content Processing
N :
roc;g;or(s) Logic 524
Storage . “\
Memory 506 Image Logic 526
504 4 J
J NN
~N
N 4 N
) 7 \ N Error Detection Logic
y \ o 528

Pointing
‘ Device
T 514

FIG. 5

US 9,471,550 B2

1

METHOD AND APPARATUS FOR
DOCUMENT CONVERSION WITH FONT
METRICS ADJUSTMENT FOR FORMAT

COMPATIBILITY

BACKGROUND

This invention relates to the fields of computer systems
and data processing. More particularly, methods and appa-
ratus are provided for converting a document from a fixed-
layout format into a portable non-fixed layout format, with
high fidelity.

Many office and presentation document software pro-
grams are designed to save documents in a manner that
exactly preserves their page layout, size, font and position-
ing information, using a fixed layout. One example is the
Portable Document Format (PDF) offered by Adobe Sys-
tems Incorporated.

Fixed-layout formats contrast with non-fixed layout for-
mats, such as HTML (HyperText Markup Language), that do
not preserve spacing, size, font and layout properties across
the various programs and browsers that are used to display
documents having such a format. A common example of a
document that does not have a fixed layout is a typical
webpage, which may appear visually different across differ-
ent web browsers, operating systems and mobile devices,
while containing all of the original semantic information.

Whereas a fixed-layout document may retain a great deal
of data to allow a program displaying the document to adjust
many characteristics of the document in order to present the
document with the desired appearance, a web page typically
does not. Although this may help reduce the size of the
webpage, and therefore allow it to be transmitted faster, the
appearance of the webpage when presented will depend on
the web browser program that present it, the platform (e.g.,
a smart phone, a portable computer) and/or operating system
of the platform.

Viewing or manipulating fixed-layout documents often
requires installation of propriety software, which is not as
widely or freely available as software that works with
non-fixed layout documents. The requirement that readers of
a fixed-layout document have special software makes it
more difficult to share the document, because not everyone
with whom the document should be shared may have the
software. This can significantly limit the distribution of the
document. In contrast, software for viewing a non-fixed
layout document, such as a web browser for viewing HTML
files, may be installed on just about every computer, tablet
and smart phone that has Internet access.

Several attempts have been made to increase the porta-
bility of documents and, in particular, to make fixed-layout
documents accessible via a browser.

One attempted solution involves the use of a browser
plug-in, such as Adobe® Flash®, to render an original
document (e.g., a Microsoft® Word document) in the
desired format (e.g., HTML) by taking advantage of features
not widely available in the output format. These solutions
are generally not available on all computing and communi-
cation platforms. For example, many mobile telephones are
limited to using standard HTML, or cannot operate the
necessary browser plug-in for some other reason. Further,
browser plug-ins often perform poorly with software
designed for HTML, such as search engine spiders or screen
readers for the visually impaired.

A second solution is to render the original document as a
series of images. However, the resulting images will nor-
mally result in the loss of all semantic content. Thus, a

25

35

40

45

55

2

viewer of the resulting images will not be able to search for
or copy any textual content that was in the original docu-
ment. In addition, the images often do not scale well to small
or large sizes. For example, if the output image is relatively
small and is stretched to appear larger, undesired visual
artifacts may appear, text and objects may not look smooth
and the overall aesthetic appeal may suffer. Further, a set of
images representing the original document may occupy a lot
of storage space, which can slow transmission and loading.
A third solution involves abandoning the original font and
page layout information, and instead rendering only the
most semantically relevant information, usually the text.
Although the semantic content is retained, all aesthetics are
lost, usually making the result visually unappealing. Such
output will usually be unsuitable for advertisements, for
documents used in a presentation and/or elsewhere.

SUMMARY

In some embodiments of the invention, methods and
apparatus are provided for converting an input document
having a fixed-layout format into a portable output format.
In these embodiments, every page of the input document is
processed to extract fonts, adjust font metrics to be com-
patible with and to display properly in a web browser,
convert the fonts to compatible formats, extract text, process
the text to allow it to be presented in the web browser
substantially identically to how it appears in the input
document, and to perform error detection on the correspond-
ing page of the output document.

Because many input documents use document-specific
encodings and character/glyph mappings, the encodings and
mappings are converted be Unicode-compatible. This may
require character and/or glyph encodings to be converted to
UTF-8 (UCS (Universal Character Set) Transformation For-
mat—S8-bit) or some other comparable form.

Some fonts (e.g., those not embedded or not available on
a target platform of the output document) may be replaced
with exact or near duplicates, such as an appropriate form of
a base-14 font. Adjustment of fonts” metrics will help ensure
they are displayed with correct spacing, positioning, kerning
and/or other characteristics, even though the output format
(e.g., HTML) cannot make those types of adjustments,
unlike a program used to create and/or present the input
document (e.g., Adobe Acrobat, Microsoft Word).

In some embodiments, error detection may involve com-
paring an image of the input document to an image of the
corresponding page of the output document. If the errors
(e.g., percentage of pixels that are different) exceed a
threshold, the corresponding page of the output may be
replaced by the image of the page of the input document.
However, text of the page may be injected into the output
document so as to retain semantic content.

DESCRIPTION OF THE FIGURES

FIG. 1 is a flow chart demonstrating an overview of the
processing of a fixed-layout document into a portable docu-
ment having a non-fixed layout, according to some embodi-
ments of the invention.

FIG. 2 is a flow chart demonstrating a method of pro-
cessing the fonts of a fixed-layout document to prepare for
inclusion in a portable document having a non-fixed layout,
according to some embodiments of the invention.

FIG. 3 is a flow chart demonstrating a method of pro-
cessing the content of a fixed-layout document to prepare for

US 9,471,550 B2

3

inclusion in a portable document having a non-fixed layout,
according to some embodiments of the invention.

FIG. 4 is a flow chart demonstrating a method of final-
izing the conversion of a fixed-layout document into a
portable document having a non-fixed layout, according to
some embodiments of the invention.

FIG. 5 is a block diagram of an apparatus for converting
a fixed-layout document into a portable document having a
non-fixed layout, according to some embodiments of the
invention.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the invention.
Various modifications to the disclosed embodiments will be
readily apparent to those skilled in the art, and the general
principles defined herein may be applied to other embodi-
ments and applications without departing from the scope of
the present invention. Thus, the present invention is not
intended to be limited to the embodiments shown.

In some embodiments of the invention, methods and
apparatus are provided for converting a document from a
fixed-layout into a portable non-fixed layout format that is
displayable by a web browser. Not only is the resulting
document displayable by a web browser, but it will be
displayed identically or very similar to the original docu-
ment, even on different platforms (e.g., stationary comput-
ers, portable computers, smart phones), operating systems
(e.g., Windows, OS X) and browsers (e.g., Internet Explorer,
Safari, FireFox, Chrome). In addition, because all semantic
content and context is retained, the end document can be
searched (e.g., for text), text can be copied and manipulated,
etc.

In these embodiments, the input document may be for-
matted according to a Microsoft Office program (e.g., Word,
PowerPoint, Excel), Adobe’s Portable Document Format
(PDF), or some other fixed-layout format. The output docu-
ment may be formatted in HTML (HyperText Markup
Language) or some other markup language.

FIG. 1 is a flow chart demonstrating an overview of the
processing of a fixed-layout document to produce a portable
document having a non-fixed layout, according to some
embodiments of the invention. Details of some operations of
the method of FIG. 1 are provided further below.

In operation 102, the fixed-layout document is received.
For example, it may be retrieved from storage and loaded
into memory. In some implementations, the document may
first be converted into a predetermined format (e.g., PDF) if
not already in that format.

In operation 104, fonts are identified, and embedded fonts
are extracted from the document, converted and/or normal-
ized. The conversion process yields fonts that are compatible
with the desired output format (e.g., HTML). For example,
if the input document employed PostScript fonts, they will
be converted to TrueType or some other format that can be
rendered by a browser program. The normalization process
adjusts font metrics to ensure correct positioning of font
glyphs when rendered by the browser. Without normaliza-
tion, a font converted from one type to another might not be
displayed in the same position or with the same orientation
as the original document.

In operation 106, text blocks within the document are
identified, extracted and processed. A text block may be
dissembled into smaller blocks so as to apply appropriate
kerning, letter spacing, scaling and/or other adjustments that
a browser cannot apply.

10

20

30

35

40

45

50

4

In operation 108, non-textual content is extracted and
rendered as one or more images. Non-textual content may
include things such as background images and graphical
objects (e.g., images, icons, shapes). The images may be
rendered on a per-page basis; that is, for each separate page
of the original document, a separate set of images of the
non-text content may be rendered.

In operation 110, the processed fonts and content are
combined in the selected non-fixed layout format (e.g.,
HTML), while retaining the visual appearance of the origi-
nal document. To preserve the appearance of the original
document, each page’s non-textual content (e.g., graphics)
may be layered with the processed font and text to reproduce
the original page, but in a portable form.

In operation 112, the quality or correctness of the output
document is determined. In some embodiments, the docu-
ment is rendered on one or more different platforms and
operating systems, and captured as images. Each image
(e.g., a page of the output document) is then compared to an
image of the input document (e.g., the corresponding page).

The comparison may entail visual comparison of the
images by a program (e.g., a pattern-matching program)
and/or a human operator. If the differences exceed a per-
missible threshold, offending pages of the output document
may be replaced with images of the pages of the original
document. Alternatively, one or more portions (e.g., pages)
of the output document may be re-generated so as to further
process the fonts, text and/or other content, and thereby
improve the output document. For example, additional
modifications may be made to some font metrics, position-
ing of text may be adjusted, etc.

If an image of a page (or other portion) of the input
document is used in place of a page (or other portion) of the
output document, a transcript of the text of that page of the
document may be injected into the output document. It may
be embedded in a manner so that the text is logically located
after the text of the previous page and before the text of the
following page, and may be associated with the replacement
page image, so as to retain some semantic context of the
document page.

In some scenarios, some content or behavior of the
original document may be so eccentric, or so unique to the
program that generated the document, that it cannot be
reproduced in the desired output format. In these situations,
an operator of the method may be advised of the problem(s).

Additional details of some of the processing of the input
document are provided in the following sections.

Font Stream

As described above, in some embodiments of the inven-
tion, the extraction, conversion and normalization of fonts
comprises one stream of activity in the processing of a
fixed-layout document to produce a portable document
having a non-fixed layout format. Processing of the other
stream, dealing with the content of the document, is
described in the following section.

FIG. 2 is a flow chart demonstrating a method of pro-
cessing the fonts of a fixed-layout document to prepare them
for inclusion in a portable document having a non-fixed
layout, according to some embodiments of the invention. In
these embodiments, fonts are extracted or identified from the
original document on a page-by-page basis. Other process-
ing (e.g., of text, of non-text content) may also be done
page-by-page in the interest of maintaining fidelity with the
pagination and appearance of the document.

In operation 202, processing of the first page or of a next
page of the document begins with identifying every font and
glyph used on the page. As one of ordinary skill in the art

US 9,471,550 B2

5

will recognize, “glyphs” are the shapes that constitute a font.
Thus, the glyphs “a” and “b” and “c” are components of one
font, while the glyphs “a” and “b” and “c” are corresponding
components of a different font (assuming this sentence prints
as intended).

As used herein, a “character” is a component of text.
Therefore, every block of text in the document comprises
one or more characters. Each character maps to a “glyph”—
the shape with which the character is rendered—that will
differ from font to font.

If the input document does not conveniently identify the
glyphs employed on each page, some processing may be
required in order to identify them. For example, it may be
necessary to examine the text of the page to identify each
character on the page, and determine which fonts those
characters are to be rendered in, in order to identify all
glyphs active on the page.

By extracting, processing and embedding only those
glyphs that will actually be needed to render the page in the
output document, the size of the document can be kept
smaller than it would be if every glyph of every font were
to be embedded (i.e., including those not used in the
document).

For fonts identified or referenced in the input document,
but not embedded, the same or a corresponding font may be
loaded for use in the output document. For example, a
referenced font may be replaced by a base 14 font, such as
a form of Times or Times New Roman, Helvetica or Arial,
or Courier. The system or apparatus on which the document
conversion is performed may maintain a table identifying
specific output fonts to use in place of identified or refer-
enced fonts (i.e., fonts not embedded in the input document).

In some embodiments of the invention, once a font is
identified in the input document, a mapping of the font’s
character codes to their corresponding glyphs is extracted.
Such extraction will depend upon the type of font (e.g.,
OpenType, TrueType, PostScript), and may be performed
using available software, such as FontForge, available at
fontforge.org, or MuPDF, available at www.mupdf.com.

Because the character code is specific to the input docu-
ment and/or font, and therefore not portable, the Unicode
(e.g., UTF-8) value for each character code is looked up,
based on the encoding of the document or font. This
produces a mapping from Unicode to glyph identities, and
can now be used in any manner supported by Unicode. The
fonts’ character identities are now equivalent to the Unicode
values representing the correct glyphs, and will be able to be
rendered in Unicode-aware contexts, such as a web browser
program.

In summary, in some implementations, mappings from
font- or document-specific character codes to glyph identi-
ties (which may display only in the original document), are
converted into mappings from Unicode values to glyph
identities.

In optional operation 204, and if not performed above in
operation 202, character encoding of the original document
is changed to a suitable format, such as UTF-8 (UCS
(Universal Character Set) Transformation Format—S8-bit),
which can represent every character of the Unicode charac-
ter set using no more than four 8-bit bytes per character.
UTF-8 is one of the dominant character encodings for
documents accessed via the World-Wide Web, if not the
dominant encoding, and thus enhances the portability of the
output document. In some embodiments of the invention, a
Unicode-compatible encoding other than UTF-8 may be
employed, such as UTF-16, UTF-32, etc.

10

15

20

25

30

35

40

45

50

55

60

65

6

In particular, and as described above, the input document
may not be encoded in UTF-8, and a font embedded in the
document may contain character mappings that are specific
to that document. For example, a character code of 111 may
represent ‘A’ in the document. If this encoding were directly
imported to a web browser in a Unicode context, it would be
displayed as ‘o’. Therefore, the character code would be
translated to 65, which in Unicode will produce ‘A’.

From operation 204 (and/or operation 202), document-
specific font files are converted into font files that can be
embedded in any UTF-8 encoded document, and properly
applied by a web browser.

In optional operation 206, the fonts identified in operation
202 are converted into an intermediate format for further
processing, prior to conversion to a final format. An illus-
trative possibility for the intermediate font format is the
Scalable Vector Graphics (SVG) format, which every (or
nearly every) browser supports and can render directly.
Advantageously, the SVG format provides all necessary
functionality for placing every font glyph (and image) in the
same location it occupied in the input document. In some
embodiments of the invention, conversion of fonts into an
intermediate format may be omitted, in which case they will
be converted directly into their final format, in operation 206
or a later operation.

In operation 208, font normalization is performed.
Whereas a font may have different metrics applied for every
operating system or device platform it is displayed on, in this
operation a font’s metrics are normalized so that the font will
display the same for every operating system and platform.
Because HTML and/or other desired output formats do not
allow manipulation of font metrics, this manipulation is
done now, before the HTML document is assembled.

In many font files, such as those of TrueType and Embed-
ded OpenType fonts, operating system-dependent metrics
are stored for affecting how the font will be positioned when
displayed within the corresponding operating system. These
metrics may include windows ascent and descent (the maxi-
mum range of font glyphs above and below the baseline, in
Microsoft Windows), typographic ascent and descent (for
expressing line spacing of the font), typographic line gap
(leading between lines), hhead ascent and descent (for line
spacing) and line gap, and/or others.

Each metric will be interpreted in a manner dependent on
the browser program displaying the document and the
operating system on which the program executes. Therefore,
without adjustment, the fonts would appear different on
different platforms, and the document would appear differ-
ent from the original, at least in some cases.

Normalization of a font starts with calculation of bound-
ing boxes for all the font’s glyphs. Individual metrics can
then be calculated as follows:

linegap = 0;
ascender = top of box + hhead ascender; and
descender = bottom of box + hhead descender.

For compatibility purposes, the windows descent value is
converted to a negative value; the hhead ascender and
descender remain as they are.

In operation 210, the extracted fonts (or the normalized
intermediate fonts if operation 206 was applied) are con-
verted into fonts compatible with the target output format
(e.g., HTML). Illustratively, these final fonts may be Embed-
ded OpenType fonts (for documents destined for Microsoft’s

US 9,471,550 B2

7

Internet Explorer), TrueType fonts (for documents for other
browsers) or other web-safe fonts.

In operation 220, if all pages have been processed for their
fonts, the illustrated method ends; otherwise, the method
returns to operation 230 to select the next page and continue.
Note that mappings created for one page (e.g., mappings
from text characters to glyphs) may be reused for another
page.

The conversion process of FIG. 2 may target just the font
glyphs that are actually used in the original document or on
the current page, in order to help limit the size of the output
document. Glyphs that won’t be displayed in the document
need not be included (embedded) in it. The conversion
process may include compression of the converted fonts.
Content Stream

The content of the document, including textual and non-
textual content, is processed separately from the fonts, but
may be done in parallel.

FIG. 3 is a flow chart demonstrating a method of pro-
cessing the content of a fixed-layout document to prepare it
for inclusion in a portable document having a non-fixed
layout, according to some embodiments of the invention. As
with the fonts, the content may be processed on a page-by-
page, again to enhance the fidelity of the output document
with respect to the original document.

In operation 302, processing of the first (or next) page
commences by taking two images of the page. One image
will be used for error detection, as described in the following
section, and includes all content. The other image is used to
capture the non-textual content of the page, and will serve as
a background for the textual content when rendered in the
output document.

The first image, for error detection, may be formed by
rasterizing the entire page, including all content. The second
image may use a version of the same software that has been
modified to skip the text or simply not render it. In some
implementations, the program used to capture the images
may be an open-source program for rasterizing PDF docu-
ments.

In operation 304, the background image captured in
operation 302 is resized and/or compressed to better suit
multiple target platforms on which the output document will
be displayed. For example, the image may be made smaller
for display on a smart phone, or may be made larger for
display on a large monitor. In some or all cases, compression
is applied to reduce the output file size.

In operation 306, individual text blocks are extracted from
the document page. Each text block may comprise any
number of characters.

While text blocks are being extracted, the encoding of the
text is converted, if necessary, to a format compatible with
web browsers, such as UTF-8. Whereas operation 204 of
FIG. 2 may have translated font character codes to corre-
spond to UTF-8 (or other appropriate format) to make them
Unicode-compatible, here we translate the character codes
of the document’s text to make them Unicode-compatible as
well.

For example, a text block in the input document may
include ‘GDXG’, with some arbitrary encoding that corre-
sponds to glyphs in the embedded font to produce the
desired output. In operation 306, ‘GDXG"’ is translated into
a Unicode-compatible encoding of the desired glyphs, such
as “TEST’, which will be processed correctly by a presen-
tation program (e.g., a web browser).

Yet turther, hyperlinks, animations and/or other metadata
are converted into appropriate HTML objects.

10

15

20

25

30

35

40

45

50

55

60

65

8

In operation 308, advanced processing is performed as
needed on the text. For example, if kerning or letter spacing
were implemented in the original document, the processed
text may be adjusted accordingly.

This may require a block of text to be dissembled into
multiple smaller blocks, perhaps even to the level of com-
prising a single character. To preserve the positioning of the
original document, these sub-blocks will be adjusted accord-
ing to the font metrics already calculated (see the preceding
section). The glyphs placed in the output document will thus
have the same positioning and spacing as the input docu-
ment.

For example, in the input document, a single word such as
“Think” may be broken into the following groups: “T°, h’,
‘1’, ‘n” and ‘k’. Exact horizontal positioning of each group is
then adjusted based on letter spacing and kerning data to
render the font in the most aesthetically pleasing manner.
More specifically, the start position of the word ‘Think’ is
known (e.g., from the end position of the previous text, by
specific location instructions), the letter spacing and width
of the glyph are known, and other relevant font metrics (if
any) are known. Thus, by applying the applicable data to
each individual group, the word can be positioned as
intended.

To continue with this example, whereas the input docu-
ment may have rendered the word “Think” using the follow-
ing code:

Think
advanced processing will break the code into the following:

T

h
i
n
k

Because some web browsers tend to ignore kerning and
letter spacing data, without these adjustments the output
document would appear different from the input. By making
the adjustments before generating the HTML output, the
word ‘Think” will be displayed with fidelity to the input
document.

In operation 320, if all pages have been processed for their
content, the illustrated method ends; until then, the method
returns to operation 330 to select the next page and continue.
Assembly and FError Detection

After the fonts and content are processed according to the
preceding sections, the output document can be assembled
and examined for correctness.

FIG. 4 is a flow chart demonstrating a method of final-
izing the conversion of a fixed-layout document into a
portable document having a non-fixed layout, according to
some embodiments of the invention.

In operation 402, the background of the first (or current)
page is laid down, using the image of non-text content of the
corresponding page of the input document.

In operation 404, glyphs of fonts used for the correspond-
ing page are placed in accordance with the adjust font
metrics, sizing and positioning calculated above. The fonts
may be embedded in the document or, if it is certain the fonts
will be available on a computer or communication device
that will display the output document, they may simply be
referenced.

In optional operation 406, the resulting page may be
optimized to improve its fidelity with the original and/or to
make loading or transmission of the page (or the overall

US 9,471,550 B2

9

document) faster. For example, to reduce the number of
objects that are referenced within the page but which reside
on a remote server, background images that are simple (e.g.,
of single color) may be replaced with embedded HTML
objects. This may require setting a background color in the
HTML output.

Another possible optimization groups together multiple
fonts extracted from the input document. In some embodi-
ments of the invention, for each page of the input document
a separate file is assembled to contain the font(s) on that
page, and that file would need to be transferred with the
output document. For fonts used on multiple pages, the same
glyphs would therefore have to be downloaded multiple
times in different files.

Therefore, an optimization may be applied to reduce the
number of font files by grouping the fonts of multiple pages
(e.g., 5, 10) into a single file. This requires fewer font files
to be downloaded, and also results in less repetition, each file
only needs to contain one copy of each glyph used on the
corresponding pages of the output document.

The resulting markup language will be scalable so that the
page can be displayed on small or large screens without
notable deviation from the appearance of the input docu-
ment.

In operation 408, error detection is performed. Illustra-
tively, this operation may entail comparing an image of the
page as it has been constructed, which may be termed the
“output page image,” with an image of the corresponding
page of the input document (e.g., from operation 302 of FIG.
3), which may be termed the “input page image.”

In some embodiments of the invention, the following
process is performed. First, in both the input and output page
images, text region boundaries are calculated or identified;
each region is mapped to the font size for text in the region.
A given text region may comprise only text having one font
size, or may comprise text of multiple font sizes. In some
embodiments of the invention, text region boundaries are
only computed for the input page image; the same bound-
aries are then applied to the output page image.

Second, both input and output page images are converted
to grayscale. Third, pixels inside the text regions are blurred,
with the amount of blurring possibly being proportional to
the (average) font size of the region. In an illustrative
implementation, blurring may involve running a box filter
with a kernel width between approximately 3 and approxi-
mately 11. No blurring is performed outside the text region
boundaries.

Fourth, the images are diffed (differenced), and the abso-
Iute value of the difference is captured. The diffed image is
then thresholded at 20% of 255, where the brightness or
intensity of the image can be measured on a scale from 0 to
255. In particular, any pixels in the diffed image having a
brightness/intensity equal to or above the threshold are set to
255 (white); pixels below are set to 0 (black). This provides
a binary image, wherein every pixel is either white or black.

Then, a 3x3 median filter is applied to the thresholded
output, to remove any isolated error pixels before calcula-
tion of the error score. Finally, the error score is calculated
as (number of white pixels)+(total number of pixels). Thus,
the white pixels in the diffed and thresholded image repre-
sent errors.

In some embodiments of the invention, error detection
involves a different process, as follows. First, the input and
output page images are converted to grayscale. Then a
Gaussian blur with a radius of 5 pixels and a standard
deviation of 3 is applied.

10

15

20

25

30

35

40

45

50

55

60

65

10

Next, the images are diffed and a 20% threshold applied.
Pixels in the difference image that are less than 20% of the
pixel range (e.g., 0 to 255) are not counted as error pixels
and are set to black; the remaining pixels are marked as error
pixels and set to white. The error score is calculated the same
way as above.

In operation 410, if the number and/or types of differences
between the images exceed a limit, the method continues at
operation 412; otherwise, the method advances to operation
414.

In different embodiments of the invention, different limits
may be placed on the amount or extent of acceptable error.
In an illustrative implementation, an error score reflecting
errors in more than 0.01% of the pixels of the output page
image may cause the output page to be abandoned and
replaced with an image of the input page.

In operation 412, the assembled page is abandoned and
the image of the corresponding page of the input document
is used in its place. As described previously, this may
prevent the text and/or other content of the page from being
searched or copied. However, in some embodiments, text
found on the page may be injected into the output document
s0 as to be searchable, and may be positioned relative to text
of preceding and/or following pages.

In operation 414, the selected page (i.e., the assembled
page or the image of the original document) is added to the
output document.

If all pages have been processed for their content, the
illustrated method ends; until then, the method continues
from operation 414 to operation 440 to select the next page
and continue.

Document Conversion Apparatus

FIG. 5 is a block diagram of an apparatus for converting
a fixed-layout document into a portable, non-fixed format,
according to some embodiments of the invention.

Document converter 500 of FIG. 5 comprises processor(s)
502, memory 504 and storage 506, which may comprise one
or more optical and/or magnetic storage components. Docu-
ment converter 500 may be coupled (permanently or tran-
siently) to keyboard 512, pointing device 514 and display
516.

Storage 506 of the document converter stores logic that
may be loaded into memory 504 for execution by processor
502. Such logic includes font processing logic 522, content
processing logic 524, image logic 526 and error detection
logic 528. In other embodiments of the invention, any or all
of these logic modules may be combined or divided to
aggregate or separate their functionality as desired.

Font processing logic 522 comprises processor-execut-
able instructions for locating, identifying and extracting
fonts of an input document (or set of documents), processing
them and inserting the same or corresponding fonts into the
output document. As described above, processing the fonts
may involve converting them from one type to another,
changing a font to one that is (or will be) available on a
target platform, adjusting metrics and/or other operations.

Content processing logic 524 comprises processor-ex-
ecutable instructions for locating, identifying and extracting
text and non-text content of the input document, processing
textual content and adding it to the output document. The
processing of text may include adjusting size, spacing and/or
other characteristics so as to maintain, in the output docu-
ment, the aesthetics of the input document.

Image logic 526 comprises processor-executable instruc-
tions for capturing images. In particular, logic 526 may
capture images of pages of the input document for later error
detection, images of the non-text content of the input docu-

US 9,471,550 B2

11

ment for inclusion in the output document, and images of an
assembled document help with error detection.

Error detection logic 528 comprises processor-executable
instructions for determining the fidelity of the output docu-
ment (or pages of the output document) to the input docu-
ment (or corresponding pages). As described above, if the
output document cannot be assembled in the desired format
(e.g., HTML) while maintaining the appearance of the
original document and enabling access to the textual con-
tent, offending pages (or other portions) may be omitted and
replaced with corresponding images.

The environment in which some embodiments of the
invention are executed may incorporate a general-purpose
computer or a special-purpose device such as a hand-held
computer or communication device. Details of such devices
(e.g., processor, memory, data storage, display) may be
omitted for the sake of clarity.

Data structures and code described in this detailed
description are typically stored on a non-transitory com-
puter-readable storage medium, which may be any device or
medium that can store code and/or data for use by a
computer system. Non-transitory computer-readable storage
media includes, but is not limited to, volatile memory,
non-volatile memory, magnetic and optical storage devices
such as disk drives, magnetic tape, CDs (compact discs),
DVDs (digital versatile discs or digital video discs), or other
non-transitory computer-readable media now known or later
developed.

Methods and processes described in the detailed descrip-
tion can be embodied as code and/or data, which can be
stored in a non-transitory computer-readable storage
medium as described above. When a processor or computer
system reads and executes the code and/or data stored on the
medium, the processor or computer system performs the
methods and processes embodied as data structures and code
and stored within the medium.

Furthermore, methods and processes described herein can
be included in hardware modules. For example, the hard-
ware modules may include, but are not limited to, applica-
tion-specific integrated circuit (ASIC) chips, field-program-
mable gate arrays (FPGAs) and other programmable-logic
devices now known or later developed. When the hardware
modules are activated, the hardware modules perform the
methods and processes included within the hardware mod-
ules.

The foregoing descriptions of embodiments of the inven-
tion have been presented for purposes of illustration and
description only. They are not intended to be exhaustive or
to limit the invention to the forms disclosed. Accordingly,
many modifications and variations will be apparent to prac-
titioners skilled in the art. The scope of the invention is
defined by the appended claims, not the preceding disclo-
sure.

What is claimed is:

1. A method of converting an input document having a
fixed-layout into a portable format, the method comprising,
for each page of the input document:

extracting a font used on the page;

converting the extracted font into a format compatible

with a web browser program, wherein said converting

comprises:

converting the extracted font into an intermediate font
format;

normalizing the intermediate font format by adjusting
metrics of the intermediate font format to cause
glyphs in a final font to have the same positioning
and line spacing as the input document, based on

10

15

20

25

30

35

40

45

50

55

60

65

12

characteristics of an operating system within which

the final font will be displayed, wherein said adjust-

ing includes, for said line spacing:

keeping hhead ascent and descent values of the
intermediate font format as they appear in the
extracted font; and

converting windows descent values of the interme-
diate font format to negative values; and

converting the normalized intermediate font format

into the final font;

extracting text from the page;

rendering content of the page, other than the font and the

text, as one or more content images;

storing the final font, the extracted text and the one or

more content images;
combining the final font, the extracted text and the one or
more content images as a corresponding page of an
output document formatted according to a markup
language compatible with the web browser program;

comparing an image of the page of the input document to
an image of the corresponding page of the output
document to generate an error score; and

if the error score exceeds a threshold, replacing the

corresponding page of the output document with an
image of the page of the input document.

2. The method of claim 1, wherein the markup language
is HTML (HyperText Markup Language).

3. The method of claim 1, wherein said extracting a font
comprises:

identifying every font used in a first page of the input

document; and

identifying every glyph used in every identified font.

4. The method of claim 1, wherein said extracting a font
comprises:

extracting a mapping of document-specific character

codes used in a first page of the input document to
corresponding glyphs; and

replacing the document-specific character codes with

Unicode-compatible character codes.

5. The method of claim 4, wherein the Unicode-compat-
ible character codes are UTF-8 (Universal Character Set
Transformation Format—S8-bit) code points.

6. The method of claim 1, wherein said extracting a font
comprises:

converting a document-specific font file into a format

compatible with UTF-8 (Universal Character Set
Transformation Format—S8-bit).

7. The method of claim 1, wherein said converting the
font comprises replacing the font with one of:

a TrueType font; and

an Embedded OpenType font.

8. The method of claim 7, wherein said converting the
font comprises:

converting the font into a scalable vector graphics format

prior to said replacing.

9. The method of claim 1, wherein said adjusting metrics
comprises:

calculating a bounding box for each glyph of each font

used in the page;

setting an ascent value equal to a sum of a position of a

top of the bounding box plus the head ascent; and

setting a descent value equal to a sum of a position of a

bottom of the bounding box plus the head descent.

10. The method of claim 1, wherein said extracting text
from the page comprises:

extracting character codes in the page used to represent

text; and

US 9,471,550 B2

13

replacing the extracted character codes with Unicode-

compatible character codes.

11. The method of claim 1, wherein said extracting text
from the page comprises:

extracting multiple blocks of text in the page; and

subdividing a first extracted block of text into multiple

sub-blocks of text.

12. The method of claim 11, further comprising:

positioning the multiple sub-blocks of text in the corre-

sponding page of the output document so as to be
displayed by the web browser substantially identically
to a display of the first extracted block of text in the
page of the input document.

13. The method of claim 1, wherein:

said error score measures a percentage of pixels of the

image of the corresponding page of the output docu-
ment that differ from the image of the page of the input
document; and

the threshold for the error score is approximately 0.01%.

14. The method of claim 1, wherein said replacing the
corresponding page of the output document with an image of
the page of the input document comprises:

embedding text of the page of the input document within

the output document so as to be searchable by a viewer
of the output document.

15. The method of claim 1, further comprising optimizing
the output document by:

combining two or more font files assembled from the

extracted fonts into a single font file.

16. The method of claim 1, further comprising optimizing
the output document by:

replacing one or more background images in the input

document with corresponding HTML objects.

17. A non-transitory computer-readable medium storing
instructions that, when executed by a processor, cause the
processor to perform a method of converting an input
document having a fixed-layout into a portable format, the
method comprising, for each page of the input document:

extracting a font used on the page;

converting the extracted font into a format compatible

with a web browser program, wherein said converting

comprises:

converting the extracted font into an intermediate font
format;

normalizing the intermediate font format by adjusting

metrics of the intermediate font format to cause glyphs

in a final font to have the same positioning and line

spacing as the input document, based on characteristics

of an operating system within which the final font will

be displayed, wherein said adjusting includes, for said

line spacing:

keeping head ascent and descent values of the inter-
mediate font format as they appear in the extracted
font; and

converting windows descent values of the intermediate
font format to negative values; and

converting the normalized intermediate font format into

the final font;

10

15

20

25

30

35

40

45

50

55

14

extracting text from the page;

rendering content of the page, other than the font and the

text, as one or more content images;

storing the final font, the extracted text and the one or

more content images;

combining the final font, the extracted text and the one or

more content images as a corresponding page of an
output document formatted according to a markup
language compatible with the web browser program;
visually comparing an image of the page of the input
document to an image of the corresponding page of the
output document to generate an error score; and
if the error score exceeds a threshold, replacing the
corresponding page of the output document with an
image of the page of the input document.

18. An apparatus for converting a fixed-layout input
document into a non-fixed format output document, com-
prising:

a display device for displaying documents;

a processor;

font-processing logic for:

identifying a font used in the input document;
converting the identified font into a format compatible
with a web browser program, wherein said convert-
ing comprises:
converting the extracted font into an intermediate
font format;
normalizing the intermediate font format by adjust-
ing metrics of the intermediate font format to
cause glyphs in a final font to have the same
positioning and line spacing as the input docu-
ment, based on characteristics of an operating
system within which the final font will be dis-
played, wherein said adjusting includes, for said
line spacing:
keeping head ascent and descent values of the
intermediate font format as they appear in the
extracted font; and
converting windows descent values of the inter-
mediate font format to negative values; and
converting the normalized intermediate font format
into the final font;
content-processing logic for:
copying textual content of the input document; and
adjusting the textual content;

image logic for:

capturing images of full pages of a document; and
capturing images of non-textual content of pages of the
input document; and

error detection logic for:

comparing a page of the output document to a corre-
sponding page of the input document; and

discarding the page of the output document if it differs
from the corresponding page of the input document
by more than a threshold.

#* #* #* #* #*

